Submitted by Anonymous (not verified) on Mon, 03/04/2024 - 14:32
Abstract: Decision-making in robotics domains is complicated by continuous state and action spaces, long horizons, and sparse feedback. One way to address these challenges is to perform bilevel planning, where decision-making is decomposed into reasoning about “what to do” (task planning) and “how to do it” (continuous optimization). Bilevel planning is powerful, but it requires multiple types of domain-specific abstractions that are often difficult to design by hand. In this talk, I will give an overview of my work on learning these abstractions from data.